Estimating Causal Effects with Error-Prone Exposures Using Control Variates

ENAR 2024 Spring Meeting

Keith Barnatchez

Biostatistics PhD Student, Harvard University Joint work with Kevin Josey, Rachel Nethery, Giovanni Parmigiani and Bryan Shepherd March 12th, 2024

Problem setting

The control variates method

Simulation study: brief snapshot

Discussion

Central to countless observational studies: interest in some measure(s) of the causal effect of an exposure/treatment A on an outcome Y

Central to countless observational studies: interest in some measure(s) of the causal effect of an exposure/treatment A on an outcome Y

• Effect of early ART initiation on 1-year post-initiation risk of suffering an AIDs-defining event

Central to countless observational studies: interest in some measure(s) of the causal effect of an exposure/treatment A on an outcome Y

• Effect of early ART initiation on 1-year post-initiation risk of suffering an AIDs-defining event

In observational studies, it is often difficult/expensive to obtain accurate measurements of the exposure ${\cal A}$

- Time of initiation often transcribed/recalled incorrectly
 - Particularly when derived from electronic health records / self-reported

In practice, it's often more feasible to collect error-prone measurements of A, denoted A^* , for every subject

In practice, it's often more feasible to collect error-prone measurements of A, denoted A^* , for every subject

Y	A	A^*	X
Y_1	?	A_1^*	X_1
÷	÷	÷	÷
Y_n	?	A_n^*	X_n

In practice, it's often more feasible to collect error-prone measurements of A, denoted A^* , for every subject

Y	A	A^*	X
Y_1	?	A_1^*	X_1
÷	÷	÷	÷
Y_n	?	A_n^*	X_n

In practice, it's often more feasible to collect error-prone measurements of A, denoted A^* , for every subject

Y	A	A^*	X
Y_1	?	A_1^*	X_1
÷	÷	÷	÷
Y_n	?	A_n^*	X_n

Growing literature on the perils of exposure measurement error in causal inference (Valeri 2021)

- Using A^* in place of A tends to produce biased effect estimates
- Difficult to correct for this bias without information on the measurement error mechanism
 - Requires design-based approaches that collect supplemental data

One design-based workaround:

• Spend additional time + resources to obtain gold-standard measurements of A for a small subset of the study data

One design-based workaround:

- Spend additional time + resources to obtain gold-standard measurements of A for a small subset of the study data
 - E.g. through manual chart review or follow-up interviews
 - Typically referred to as a *double sampling* study design (Hidiroglou 2001) or *validation study*
 - Usually infeasible to validate every subject (otherwise, would be no need for this talk)

One design-based workaround:

- Spend additional time + resources to obtain gold-standard measurements of A for a small subset of the study data
 - E.g. through manual chart review or follow-up interviews
 - Typically referred to as a *double sampling* study design (Hidiroglou 2001) or *validation study*
 - Usually infeasible to validate every subject (otherwise, would be no need for this talk)
- The subset of data with gold-standard measurements is typically referred to as the *validation data*
 - Intuition: provides complete information for a subset of data, and provides insight into measurement error mechanism

Problem setting

The control variates method

Simulation study: brief snapshot

Discussion

Causal estimand: $\tau \stackrel{\text{def}}{=} \mathbb{E}[Y(1) - Y(0)]$ (average treatment effect)

Causal estimand: $\tau \stackrel{\text{def}}{=} \mathbb{E}[Y(1) - Y(0)]$ (average treatment effect)

Y	A	A^*	X	S
Y_1	A_1	A_1^*	X_1	1
Y_2		A_2^*	X_2	0
Y_3		A_3^*	X_3	0
Y_4	A_4	A_4^*	X_4	1
Y_5		A_5^*	X_5	0
Y_6	A_6	A_6^*	X_6	1

(a) Main dataset

Causal estimand: $\tau \stackrel{\text{def}}{=} \mathbb{E}[Y(1) - Y(0)]$ (average treatment effect)

Y	A	A^*	X	S
Y_1	A_1	A_1^*	X_1	1
Y_2		A_2^*	X_2	0
Y_3		A_3^*	X_3	0
Y_4	A_4	A_4^*	X_4	1
Y_5		A_5^*	X_5	0
Y_6	A_6	A_6^*	X_6	1

(a) Main dataset

Y	A	A^*	X	S
Y_1	A_1	A_1^*	X_1	1
Y_4	A_4	A_4^*	X_4	1
Y_6	A_6	A_6^*	X_6	1

(b) Validation dataset

Make the standard causal inference assumptions: **consistency**, **positivity** and **unconfoundedness**

Additionally, assume the validation data is obtained completely at random: $S \perp\!\!\!\perp (Y, A, A^*, X)$

- Can be enforced by design in EHR data settings
- This can be relaxed to allow for more flexible validation sampling schemes/study designs

Ideally, we'd like an estimator that

• Is (1) unbiased, (2) model-agnostic, and (3) efficient

Ideally, we'd like an estimator that

• Is (1) unbiased, (2) model-agnostic, and (3) efficient

Notice we can achieve (1) and (2) by employing doubly-robust methods (e.g. AIPW) on only the validation data

- But this approach completely ignores the remaining observations!
 - Unbiased, but highly inefficient as validation samples are typically small

Ideally, we'd like an estimator that

• Is (1) unbiased, (2) model-agnostic, and (3) efficient

Notice we can achieve (1) and (2) by employing doubly-robust methods (e.g. AIPW) on only the validation data

- But this approach completely ignores the remaining observations!
 - Unbiased, but highly inefficient as validation samples are typically small

Our approach is adapted from Yang and Ding (2019)

• Idea: Improve the efficiency of an initial unbiased (but inefficient) estimator of τ by augmenting it with a variance reduction term formed from the full data

Problem setting

The control variates method

Simulation study: brief snapshot

Discussion

Y	A	A^*	X
Y_1	A_1	A_1^*	X_1
Y_3	A_3	A_3^*	X_3
Y_5	A_5	A_5^*	X_5

Step 1: obtain validation data only estimator

Validation data only estimate: $\hat{\tau}_{\rm val}$

Step 2: construct the control variate

Y	A	A^*	X
Y_1	A_1	A_1^*	X_1
Y_2		A_2^*	X_2
Y_3	A_3	A_3^*	X_3
Y_4		A_4^*	X_4
Y_5	A_5	A_5^*	X_5
Y_6		A_6^*	X_6

Y	A	A^*	X
Y_1	A_1	A_1^*	X_1
Y_3	A_3	A_3^*	X_3
Y_5	A_5	A_5^*	X_5

Error-prone estimate: $\hat{\tau}_{\text{main}}^{\text{e.p.}}$

Error-prone estimate: $\hat{\tau}_{val}^{e.p.}$

Step 3: Compute the variance reduction term

Obtain
$$\hat{\Gamma} = \widehat{\text{Cov}}(\hat{\tau}_{\text{val}}, \hat{\tau}_{\text{main}}^{\text{e.p.}} - \hat{\tau}_{\text{val}}^{\text{e.p.}})$$
 and $\hat{V} = \widehat{\text{Var}}(\hat{\tau}_{\text{main}}^{\text{e.p.}} - \hat{\tau}_{\text{val}}^{\text{e.p.}})$

Step 4: Form the final estimator

Obtain final estimate: $\hat{\tau}_{CV} = \hat{\tau}_{val} - \hat{\Gamma} \hat{V}^{-1} (\hat{\tau}_{main}^{e.p.} - \hat{\tau}_{val}^{e.p.})$

Efficiency gain: $Var(\hat{\tau}_{CV}) = Var(\hat{\tau}_{val}) - \Gamma^2/V$, where

- + Γ is the covariance between $\hat{\tau}_{\rm val}$ and the control variate
- $\bullet~V$ is the variance of the control variate

Efficiency gain: $Var(\hat{\tau}_{CV}) = Var(\hat{\tau}_{val}) - \Gamma^2/V$, where

- + Γ is the covariance between $\hat{\tau}_{\rm val}$ and the control variate
- $\bullet~V$ is the variance of the control variate

Double robustness: Consistent if either the outcome model or propensity score model is correctly specified

Efficiency gain: $Var(\hat{\tau}_{CV}) = Var(\hat{\tau}_{val}) - \Gamma^2/V$, where

- + Γ is the covariance between $\hat{\tau}_{\rm val}$ and the control variate
- $\bullet~V$ is the variance of the control variate

Double robustness: Consistent if either the outcome model or propensity score model is correctly specified

Flexible estimation of nuisance models:

•
$$\hat{\tau}_{CV} \xrightarrow{p} \tau$$
 at \sqrt{n} rates

Efficiency gain: $Var(\hat{\tau}_{CV}) = Var(\hat{\tau}_{val}) - \Gamma^2/V$, where

- + Γ is the covariance between $\hat{\tau}_{\rm val}$ and the control variate
- $\bullet~V$ is the variance of the control variate

Double robustness: Consistent if either the outcome model or propensity score model is correctly specified

Flexible estimation of nuisance models:

- $\hat{\tau}_{\text{CV}} \xrightarrow{p} \tau$ at \sqrt{n} rates
- Even if the nuisance models are estimated with ML methods that themselves have slower rates of convergence

Efficiency gain: $Var(\hat{\tau}_{CV}) = Var(\hat{\tau}_{val}) - \Gamma^2/V$, where

- + Γ is the covariance between $\hat{\tau}_{\rm val}$ and the control variate
- $\bullet~V$ is the variance of the control variate

Double robustness: Consistent if either the outcome model or propensity score model is correctly specified

Flexible estimation of nuisance models:

- $\hat{\tau}_{\text{CV}} \xrightarrow{p} \tau$ at \sqrt{n} rates
- Even if the nuisance models are estimated with ML methods that themselves have slower rates of convergence
 - Common property of "doubly-robust" estimators

The control variates method is **flexible** – can account for...

- More general validation data sampling schemes / account for multiple study sites
- Simultaneous error in the outcome of interest

The control variates method is **flexible** – can account for...

- More general validation data sampling schemes / account for multiple study sites
- Simultaneous error in the outcome of interest
- Other causal estimands
 - E.g. local average treatment effects if one has access to an instrumental variable

Problem setting

The control variates method

Simulation study: brief snapshot

Discussion

Compared the control variates estimator to

- An oracle estimator (know A for the entire dataset, estimate τ with AIPW) and a naive estimator that uses A^* in place of A
- A validation data only estimator
- Multiple imputation
 - Standard method for performing causal inference with error-prone exposures

• Varying degrees of exposure misclassification

- Varying degrees of exposure misclassification
- Two different sampling schemes for the validation data
 - 1. Obtained completely at random
 - 2. Obtained conditionally (on X) at random

- Varying degrees of exposure misclassification
- Two different sampling schemes for the validation data
 - 1. Obtained completely at random
 - 2. Obtained conditionally (on X) at random
- Varying the relative size of the validation data, $\mathbb{P}(S=1)$
 - For this talk, $\mathbb{P}(S=1)=0.3$

Brief snapshot of simulation study

Problem setting

The control variates method

Simulation study: brief snapshot

Discussion

• Growing set of methods for accounting for measurement error in causal inference

- Growing set of methods for accounting for measurement error in causal inference
- Control variates method enjoys the **flexibility** of methods like multiple imputation / regression calibration...

- Growing set of methods for accounting for measurement error in causal inference
- Control variates method enjoys the **flexibility** of methods like multiple imputation / regression calibration...
 - with some additional theoretical properties commonly associated with traditional "doubly-robust" estimators

- Growing set of methods for accounting for measurement error in causal inference
- Control variates method enjoys the **flexibility** of methods like multiple imputation / regression calibration...
 - with some additional theoretical properties commonly associated with traditional "doubly-robust" estimators
- A The control variates method isn't appropriate for every measurement error problem
 - Requires the availability of /ability to obtain a validation dataset
 - As always, care should be taken to assess the plausibility of the causal assumptions

Thank you!

keithbarnatchez@g.harvard.edu

Working paper coming soon!

- Dahabreh, I. J., Robertson, S. E., Tchetgen, E. J., Stuart, E. A., and Hernán, M. A. (2019). Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals. *Biometrics*, 75(2):685–694.
- Hidiroglou, M. (2001). Double sampling. Survey methodology, 27(2):143-154.
- Valeri, L. (2021). Measurement error in causal inference. In Handbook of Measurement Error Models, pages 453-480. Chapman and Hall/CRC.
- Yang, S. and Ding, P. (2019). Combining multiple observational data sources to estimate causal effects. Journal of the American Statistical Association.
- Zeng, Z., Kennedy, E. H., Bodnar, L. M., and Naimi, A. I. (2023). Efficient generalization and transportation. arXiv preprint arXiv:2302.00092.

Notice

$$\begin{aligned} \mathsf{Var}(\hat{\tau}_{\mathsf{CV}}) &= \mathsf{Var}(\hat{\tau}_{\mathsf{val}}) + b^2 \mathsf{Var}(\hat{\tau}_{\mathsf{main,ep}} - \hat{\tau}_{\mathsf{val,ep}}) - 2b \mathsf{Cov}(\hat{\tau}_{\mathsf{val}}, \hat{\tau}_{\mathsf{main,ep}} - \hat{\tau}_{\mathsf{val,ep}}) \\ &= \mathsf{Var}(\hat{\tau}_{\mathsf{val}}) + b^2 V - 2b \Gamma \end{aligned}$$

Minimzing with respect to \boldsymbol{b} yields

 $b = \Gamma V^{-1}$

Implying with this choice of b,

$$\operatorname{Var}(\hat{\tau}_{\mathsf{CV}}) = \operatorname{Var}(\hat{\tau}_{\mathsf{val}}) - \Gamma^2 V^{-1}$$

Back to control variates slide

In many realistic scenarios, validation data won't just be a random draw from main dataset

- When that's the case, naively implementing C.V. method will actually add bias
- Intuition is that $\hat{\tau}_{val,e.p.} \not\xrightarrow{p} \hat{\tau}_{main,e.p.}$ when $X \not\perp S$ (distributions of effect modifiers are different)
- On top of that, our validation-data only estimator $\hat{\tau}_{\rm val}$ will be subject to external validity bias

This implies we need to explore ways to

- Adjust $\hat{\tau}_{\rm val}$ so that it targets the ATE in the population of interest
- Adjust $\hat{\tau}_{\mathsf{val},\mathsf{e.p.}}$ in the same manner

In the 2 study generalizability setting, Dahabreh et al. (2019) and Zeng et al. (2023) have proposed the following doubly-robust estimator for τ :

$$\hat{\psi}_{a} = \sum_{i=1}^{n} \left[\frac{I(A_{i} = a, S_{i} = 1)(Y_{i} - \hat{\mu}_{a}(\boldsymbol{X}_{i}))}{\hat{\rho}(\boldsymbol{X}_{i})\hat{\pi}_{a}(\boldsymbol{X}_{i})} + \hat{\mu}_{a}(\boldsymbol{X}_{i}) \right]$$

- $\hat{\rho}(\boldsymbol{X}_i)$ is estimated probability of "selection" into val. data
- $\hat{\mu}_a(\mathbf{X}_i) = \hat{\mathbb{E}}(Y|\mathbf{X}_i, A = a, S = 1), \ \hat{\pi}_a(\mathbf{X}_i) = \hat{\mathbb{P}}(A_i = a|\mathbf{X}_i, S_i = 1)$
- + $\hat{\tau}$ is obtained by taking the difference $\hat{\psi}_1 \hat{\psi}_0$

1. Using the validation dataset, obtain an estimate of $\tau,$ denoted $\hat{\tau}_{\rm val}$

- 1. Using the validation dataset, obtain an estimate of $\tau,$ denoted $\hat{\tau}_{\rm val}$
- 2. Using A^* , obtain *error-prone* estimates of τ in the main and validation datasets, denoted $\hat{\tau}_{val,ep}$ and $\hat{\tau}_{main,ep}$ respectively

- 1. Using the validation dataset, obtain an estimate of $\tau,$ denoted $\hat{\tau}_{\rm val}$
- 2. Using A^* , obtain *error-prone* estimates of τ in the main and validation datasets, denoted $\hat{\tau}_{val,ep}$ and $\hat{\tau}_{main,ep}$ respectively
- 3. Under the earlier causal assumptions, will have

$$\sqrt{n_{\mathsf{val}}} \begin{pmatrix} \hat{\tau}_{\mathsf{val}} - \tau \\ \hat{\tau}_{\mathsf{main},\mathsf{ep}} - \hat{\tau}_{\mathsf{val},\mathsf{ep}} \end{pmatrix} \stackrel{D}{\to} N\left(\mathbf{0}, \mathbf{\Sigma}\right), \quad \mathbf{\Sigma} = \begin{pmatrix} v & \Gamma \\ \Gamma & V \end{pmatrix}$$

- 1. Using the validation dataset, obtain an estimate of $\tau,$ denoted $\hat{\tau}_{\rm val}$
- 2. Using A^* , obtain *error-prone* estimates of τ in the main and validation datasets, denoted $\hat{\tau}_{val,ep}$ and $\hat{\tau}_{main,ep}$ respectively
- 3. Under the earlier causal assumptions, will have

$$\sqrt{n_{\mathsf{val}}} \begin{pmatrix} \hat{\tau}_{\mathsf{val}} - \tau \\ \hat{\tau}_{\mathsf{main},\mathsf{ep}} - \hat{\tau}_{\mathsf{val},\mathsf{ep}} \end{pmatrix} \xrightarrow{D} N\left(\mathbf{0}, \mathbf{\Sigma}\right), \quad \mathbf{\Sigma} = \begin{pmatrix} v & \Gamma \\ \Gamma & V \end{pmatrix}$$

where we can construct estimators of the form

$$\hat{\tau}_{\rm CV} = \hat{\tau}_{\rm val} - b(\hat{\tau}_{\rm main,ep} - \hat{\tau}_{\rm val,ep}),$$

- 1. Using the validation dataset, obtain an estimate of $\tau,$ denoted $\hat{\tau}_{\rm val}$
- 2. Using A^* , obtain *error-prone* estimates of τ in the main and validation datasets, denoted $\hat{\tau}_{val,ep}$ and $\hat{\tau}_{main,ep}$ respectively
- 3. Under the earlier causal assumptions, will have

$$\sqrt{n_{\mathsf{val}}} \begin{pmatrix} \hat{\tau}_{\mathsf{val}} - \tau \\ \hat{\tau}_{\mathsf{main},\mathsf{ep}} - \hat{\tau}_{\mathsf{val},\mathsf{ep}} \end{pmatrix} \xrightarrow{D} N\left(\mathbf{0}, \mathbf{\Sigma}\right), \quad \mathbf{\Sigma} = \begin{pmatrix} v & \Gamma \\ \Gamma & V \end{pmatrix}$$

where we can construct estimators of the form

$$\hat{\tau}_{\rm CV} = \hat{\tau}_{\rm val} - b(\hat{\tau}_{\rm main,ep} - \hat{\tau}_{\rm val,ep}),$$

setting $b = \Gamma V^{-1}$ so that $\mathrm{Var}(\hat{\tau}_{\mathrm{CV}}) \leq \mathrm{Var}(\hat{\tau}_{\mathrm{val}})$. Finding b