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Motivation

Central to countless observational studies: interest in some measure(s) of the causal effect

of an exposure/treatment A on an outcome Y

• Effect of early ART initiation on 1-year post-initiation risk of suffering an AIDs-defining

event

In observational studies, it is often difficult/expensive to obtain accurate measurements of the

exposure A

• Time of initiation often transcribed/recalled incorrectly

• Particularly when derived from electronic health records / self-reported
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Motivation

In practice, it’s often more feasible to collect error-prone measurements of A, denoted A∗, for

every subject

Y A A∗ X

Y1 ? A∗
1 X1

...
...

...
...

Yn ? A∗
n Xn

X A Y

A∗

Growing literature on the perils of exposure measurement error in causal inference (Valeri

2021)

• Using A∗ in place of A tends to produce biased effect estimates

• Difficult to correct for this bias without information on the measurement error mechanism

• Requires design-based approaches that collect supplemental data
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Addressing measurement error via study design

One design-based workaround:

• Spend additional time + resources to obtain gold-standard measurements of A for a small
subset of the study data

• E.g. through manual chart review or follow-up interviews

• Typically referred to as a double sampling study design (Hidiroglou 2001) or validation study

• Usually infeasible to validate every subject (otherwise, would be no need for this talk)

• The subset of data with gold-standard measurements is typically referred to as the

validation data

• Intuition: provides complete information for a subset of data, and provides insight into

measurement error mechanism
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Exposure measurement error data structure

Causal estimand: τ
def
= E[Y (1)− Y (0)] (average treatment effect)

Y A A∗ X S

Y1 A1 A∗
1 X1 1

Y2 A∗
2 X2 0

Y3 A∗
3 X3 0

Y4 A4 A∗
4 X4 1

Y5 A∗
5 X5 0

Y6 A6 A∗
6 X6 1

(a) Main dataset

Y A A∗ X S

Y1 A1 A∗
1 X1 1

Y4 A4 A∗
4 X4 1

Y6 A6 A∗
6 X6 1

(b) Validation dataset
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Assumptions

Make the standard causal inference assumptions: consistency, positivity and

unconfoundedness

Additionally, assume the validation data is obtained completely at random: S ⊥⊥ (Y,A,A∗,X)

• Can be enforced by design in EHR data settings

• This can be relaxed to allow for more flexible validation sampling schemes/study designs
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Estimation wishlist

Ideally, we’d like an estimator that

• Is (1) unbiased, (2) model-agnostic, and (3) efficient

Notice we can achieve (1) and (2) by employing doubly-robust methods (e.g. AIPW) on only

the validation data

• But this approach completely ignores the remaining observations!

• Unbiased, but highly inefficient as validation samples are typically small

Our approach is adapted from Yang and Ding (2019)

• Idea: Improve the efficiency of an initial unbiased (but inefficient) estimator of τ by

augmenting it with a variance reduction term formed from the full data
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Step 1: obtain validation data only estimator Step 3: Compute the variance reduction term

Obtain �̂ = ‘Cov(⌧̂val, ⌧̂
e.p.
main � ⌧̂ e.p.

val ) and V̂ = dVar(⌧̂ e.p.
main � ⌧̂ e.p.

val )Y A A⇤ X

Y1 A1 A⇤
1 X1

Y3 A3 A⇤
3 X3

Y5 A5 A⇤
5 X5

Validation data only estimate: ⌧̂val

Step 2: construct the control variate Step 4: Form the final estimator

Obtain final estimate: ⌧̂CV = ⌧̂val � �̂V̂ �1(⌧̂ e.p.
main � ⌧̂ e.p.

val )Y A A⇤ X

Y1 A1 A⇤
1 X1

Y2 A⇤
2 X2

Y3 A3 A⇤
3 X3

Y4 A⇤
4 X4

Y5 A5 A⇤
5 X5

Y6 A⇤
6 X6

Error-prone estimate: ⌧̂ e.p.
main

Y A A⇤ X

Y1 A1 A⇤
1 X1

Y3 A3 A⇤
3 X3

Y5 A5 A⇤
5 X5

Error-prone estimate: ⌧̂ e.p.
val
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Control variates method: properties

Efficiency gain: Var(τ̂CV) = Var(τ̂val)− Γ2/V , where

• Γ is the covariance between τ̂val and the control variate

• V is the variance of the control variate

Double robustness: Consistent if either the outcome model or propensity score model is

correctly specified

Flexible estimation of nuisance models:

• τ̂CV
p→ τ at

√
n rates

• Even if the nuisance models are estimated with ML methods that themselves have slower

rates of convergence

• Common property of “doubly-robust” estimators
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Control variates method: extensions

The control variates method is flexible – can account for...

• More general validation data sampling schemes / account for multiple study sites

• Simultaneous error in the outcome of interest

• Other causal estimands

• E.g. local average treatment effects if one has access to an instrumental variable
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Brief snapshot of simulation study

Compared the control variates estimator to

• An oracle estimator (know A for the entire dataset, estimate τ with AIPW) and a naive

estimator that uses A∗ in place of A

• A validation data only estimator

• Multiple imputation

• Standard method for performing causal inference with error-prone exposures

10/13



Brief snapshot of simulation study

Compared performances of each estimator under:

• Varying degrees of exposure misclassification

• Two different sampling schemes for the validation data

1. Obtained completely at random

2. Obtained conditionally (on X) at random

• Varying the relative size of the validation data, P(S = 1)

• For this talk, P(S = 1) = 0.3
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Brief snapshot of simulation study

% Bias 95% C.I. cov. RMSE
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Validation data obtained completely at random
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Validation data obtained conditionally at random

C.V. Mult. imp. Naive Oracle Val. data only

12/13



Roadmap

Motivation

Problem setting

The control variates method

Simulation study: brief snapshot

Discussion

12/13



Discussion

• Growing set of methods for accounting for measurement error in causal inference

• Control variates method enjoys the flexibility of methods like multiple imputation /

regression calibration...

• with some additional theoretical properties commonly associated with traditional

“doubly-robust” estimators

▲! The control variates method isn’t appropriate for every measurement error problem

• Requires the availability of /ability to obtain a validation dataset

• As always, care should be taken to assess the plausibility of the causal assumptions
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Thank you!

keithbarnatchez@g.harvard.edu

Working paper coming soon!
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Variance Reduction

Notice

Var(τ̂CV) = Var(τ̂val) + b2Var(τ̂main,ep − τ̂val,ep)− 2bCov(τ̂val, τ̂main,ep − τ̂val,ep)

= Var(τ̂val) + b2V − 2bΓ

Minimzing with respect to b yields

b = ΓV −1

Implying with this choice of b,

Var(τ̂CV) = Var(τ̂val)− Γ2V −1

Back to control variates slide



Covariate-dependent selection Back to main CV method

In many realistic scenarios, validation data won’t just be a random draw from main dataset

• When that’s the case, naively implementing C.V. method will actually add bias

• Intuition is that τ̂val,e.p. ̸
p→ τ̂main,e.p. when X ̸⊥⊥ S (distributions of effect modifiers are

different)

• On top of that, our validation-data only estimator τ̂val will be subject to external validity

bias

This implies we need to explore ways to

• Adjust τ̂val so that it targets the ATE in the population of interest

• Adjust τ̂val,e.p. in the same manner



Covariate-dependent selection

In the 2 study generalizability setting, Dahabreh et al. (2019) and Zeng et al. (2023) have

proposed the following doubly-robust estimator for τ :

ψ̂a =

n∑
i=1

[
I(Ai = a, Si = 1)(Yi − µ̂a(Xi))

ρ̂(Xi)π̂a(Xi)
+ µ̂a(Xi)

]

• ρ̂(Xi) is estimated probability of “selection” into val. data

• µ̂a(Xi) = Ê(Y |Xi, A = a, S = 1), π̂a(Xi) = P̂(Ai = a|Xi, Si = 1)

• τ̂ is obtained by taking the difference ψ̂1 − ψ̂0



Control variates method

1. Using the validation dataset, obtain an estimate of τ , denoted τ̂val

2. Using A∗, obtain error-prone estimates of τ in the main and validation datasets, denoted

τ̂val,ep and τ̂main,ep respectively

3. Under the earlier causal assumptions, will have

√
nval

(
τ̂val − τ

τ̂main,ep − τ̂val,ep

)
D→ N (0,Σ) , Σ =

(
v Γ

Γ V

)

where we can construct estimators of the form

τ̂CV = τ̂val − b(τ̂main,ep − τ̂val,ep),

setting b = ΓV −1 so that Var(τ̂CV) ≤ Var(τ̂val) Finding b
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