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Explosion of the use of electronic health record (EHR) data for conducting observational causal
inference studies

e Where, at a high level, one is interested in some measure of causal effect of a treatment A
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Explosion of the use of electronic health record (EHR) data for conducting observational causal

inference studies

e Where, at a high level, one is interested in some measure of causal effect of a treatment A

on an outcome of interest Y

And for good reason!

e EHR data is typically cheaper to obtain, fairly representative of patient populations, rich in

information on potential confounding factors X, and blg

But EHR data tends to present numerous challenges

e Including in outcomes (Y) and treatments (A) of interest
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EHR data: in a perfect world

Suppose we aim to estimate the average treatment effect of a binary treatment A on Y

r =E[Y(1) - Y(0)]
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EHR data: in a perfect world

Suppose we aim to estimate the average treatment effect of a binary treatment A on Y

r =E[Y(1) - Y(0)]

Y A X

Y1 Ay X
Yo Ay X5
Ys Ay X
Yy Ay X4
Ys A5 Xs
Ys Asg X

In a perfect world, we'd have access to the true outcome + treatment values (+ covariates X)
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EHR data: in aperfeet-weorld reality

Y Y= A A* X

NA Yy NA At X,
NA Yy NA Al X,
NA Yy NA Al X
NA Y; NA A X,
NA Vi NA Af X

NA Y§ NA Al X
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EHR data: in aperfeet-weorld reality

Y Y= A A* X

NA Yy NA At X,
NA Yy NA Al X,
NA Yy NA Al X
NA Y; NA A X,
NA Vi NA Af X

NA Y§ NA Al X

In practice, we often only have error-prone measurements of Y and A, denoted Y* and A*

e Well-documented that using Y* and A* in place of Y and A can lead to severely
causal effect estimates
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EHR data: a study design-based workaround

i Yy A A X 1
Yy AL X 0
Yy A3 X 0
Y, Yy A AL Xy 1
Yy At X, 0

Yo Yy o As A Xe 1

In practice, can sometimes spend time + money to obtain measurements for a
random (typically small) subset of this data
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EHR data: a study design-based workaround

Y Y A A* X R

i Yy A A X 1
Yy A3 X, 0
Yy A3 X5 0
Y, Yy A, A Xy 1
Yz A X5 0
Yo @ Y§ o As Ay Xe 1

In practice, selection into this subset can often be controlled, and may depend on the initial

error-prone measurements: R /I A* Y* X

e Especially common sampling strategy if Y and/or A are rare
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EHR data: a study design-based workaround

Y Y= A A* X R

Yi Y Aq A X1 1
er* A; X9

o O

Yy A3 X3
Y. Yp A A X4 1
Yy A X5 0
Yo  Ye As AL Xe 1

In practice, selection into this subset can often be controlled, and may depend on the initial

error-prone measurements: R /I A* Y* X

e Intuition: over-sample subjects who contribute more information to the target estimand
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Our Contributions

At a high-level, our work addresses the following question: How do we estimate causal effects
nonparametrically when

1. We have error-prone outcome + treatment measurements for all subjects

2. We have gold-standard treatment + outcome measurements for a subset of our EHR
data, where...

3. This subset was collected according to a sampling rule that is dependent on the initially
observed data: X, A* and Y™ all influence R

We present two asymptotically equivalent approaches to constructing efficient nonparametric
causal effect estimators
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Approach 1:

Using the observed data distribution

Y Y A A X R
i V¢ oA A X 1
Yy A3 X, 0

Yy Ay X5 0

Ya Y A AL X4 1
5 A X5 0

Yo Y¢ As A Xo 1
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Approach 1: Using the observed data distribution

Y Y* A A* X R
i Yy oA A x; 1
Yy A X, 0
G 4 X 0 @@
Y, Y Ay AL X4 1
& A X5 0
1

Yo Y5 As Af Xe

Main goal: Estimate counterfactual means E[Y (a)] (a € {0,1}) efficiently, allowing R to
depend on X, Y™ and A*
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Approach 1: Using the observed data distribution

Yy vy A A* X R
Y1 Y A A Xp 1
Yy A3 X, 0
ey Ay X3 0 ° ° ° e e
Y, Y Ay AL X4 1
& A: X5 0
Yo Y& A AF X 1 @
Construction of estimators follows standard pipeline:

causal estimand

E[Y (a)]
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Approach 1: Using the observed data distribution

Y Y- A A* X R
i Yy oA A x; 1
Yy A3 X, 0
ey Ay X3 0 ° ° ° e e
Yo Y Ay A Xy 1
= Af X5 0
Yo Y& A AF X 1 @
Construction of estimators follows standard pipeline:
causal estimand stat. estimand
E[Y (a)] — E[f(data)]

Assumptions
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Approach 1: Using the observed data distribution

Y Y- A A* X R
i Yy oA A x; 1
Yy A3 X, 0
ey Ay X3 0 ° ° ° e e
Yo Y Ay A Xy 1
> A X5 0
Yo Y& A AF X 1 @
Construction of estimators follows standard pipeline:
plug-in estimator
causal estimand stat. estimand - 1 < .
E[Y (a)] — E[f(data)] — 1, = fo(datai)
Assumptions n 4 ]
1=
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Approach 1:

Using the observed data distribution

Y Y A A X R
i V¢ oA A X 1
Yy A3 X, 0

Yy Ay X5 0

Ya Y A AL X4 1
5 A X5 0

Yo Y¢ As A Xo 1

Construction of estimators follows standard

causal estimand

E[Y (a)]

—

Assumptions

plug-in estimator

stat. estimand

E[f(data)] — oF'=

% é f(datai)

pipeline:

debiased est.

— s POS

(tedious) work
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Approach 1: Using the observed data distribution

Yy vy A A* X R
i Yy oA A X, 1
Yy A5 X, 0
ey Ay X3 0 ° ° ° e e
Yo Y Ay A Xy 1
> A X5 0
Yo Yy As Ar Xe 1 6
Letting Z = (X, A*,Y™), we derive a estimator
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Approach 1: Using the observed data distribution

Yy vy A A* X R
Vi Yr A AP Xy 1

Yy A5 X, 0

ey Ay X3 0 ° ° ° e e
Yo Yy A A X4 1

o A X5 0
Yo Yy As Ar Xe 1 6

Letting Z = (X, A*,Y™*), we derive a estimator
oo
JP = EZ]E)\ f1a(Z)|X]
nim E(2)X]

where A, and [l are imputation functions for A and Y, respectively
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Approach 1: Using the observed data distribution

Yy vy A A" X R
i Yy oA A X, 1 .
Yy A5 X, 0
Vo4 X o Ow & a09y0
Y, Yp A A X, 1
Y A: X5 0
Yo Yy As Ar Xe 1 @
Letting Z = (X, A*,Y™*), we derive a estimator
n AN A
@Pl,l _ 1 Z E[Xa(2) - a(2)|X]
a

n -
=1

EX(Z)|X]
where )\, and /i, are imputation functions for A and Y, respectively
e Interpretation: IPW on imputed values, after marginalizing out post-treatment variables
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Approach 1: Using the observed data distribution

Yy vy A A" X R
i Yy oA A X, 1 .
Yy A5 X, 0
Vo4 X o Ow & a09y0
Y, Yp A A X, 1
Y A: X5 0
Yo Yy As Ar Xe 1 @
Letting Z = (X, A*,Y™*), we derive a estimator
n AN A
@Pl,l _ 1 Z E[Xa(2) - a(2)|X]
a

n -
=1

E[\(2)|X]
where )\, and /i, are imputation functions for A and Y, respectively
e Drawback: Inference intractable when nuisance models are fit data-adaptively
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Approach 1: Using the observed data distribution

Y Y- A A* X R
i Yy oA A x; 1
Yy A3 X, 0
ey Ay X3 0 ° ° ° e e
Y, Y Ay AL X4 1
= Af X5 0
Yo Y& A AF X 1 @
To enable inference, we derive a one-step estimator
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Approach 1: Using the observed data distribution

Y Y- A A* X R
i Yy oA A x; 1
Yy A3 X, 0
ey Ay X3 0 ° ° ° e e
Y, Y Ay AL X4 1
= Af X5 0
Yo Y& A AF X 1 @
To enable inference, we derive a one-step estimator

9051 — %Xn: E[Xa(Z) - 1a(Z)|X] L BC

where BC is a bias correction term based on the efficient influence function for 1),
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Approach 1: Using the observed data distribution

Y Y* A A* X R
i Yy oA A x; 1
Yy A X, 0
G 4 X o @@
Y, Y Ay AL X4 1
& A X5 0
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Approach 1: Using the observed data distribution

Yy vy A A* X R

Y, ¢ A A X 1

Yy A Xo 0
Wi Ay X3 0 ° ° ° e e

Yo Y AL A X 1

. A X5 O

1

Yo Y5 As Af Xe

We document multiple properties of 05

1. Bias correction enables valid inference when nuisance models are fit with flexible ML

1/4

methods that converge at n rates, however...
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Approach 1: Using the observed data distribution

Y Y* A4 A X R
Y, V¢ A A X 1
Yy A Xy 0
Yi A X 0 O—@—@—()—»
Yo VP AL A X 1
Yz A X5 0
Yo Yo As Ar Xe 1 °

We document multiple properties of 051

1. Bias correction enables valid inference when nuisance models are fit with flexible ML
methods that converge at n'/4 rates, however...

2. This bias correction term introduces numerous unstable weighting terms that can harm
finite sample performance
e Particularly concerning, as validation samples tend to be small in practice
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Methods

Approach 2
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Approach 2: Complete-data projection

Y Y* A A* X R
i Yy oA A x; 1
Yy A X, 0
Vo4 X o @@
Y, Y Ay AL X4 1
& A X5 0
1

Yo Y5 As Af Xe

Approach 2 is based on a well-developed, but relatively underutilized, framework for
constructing debiased estimators under missing data (van der Laan and Robins 2003)
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Approach 2: Complete-data projection

Y Y* A A* X R
i Yy oA A x; 1
Yy A X, 0
Vo4 X o @@
Y, Y Ay AL X4 1
& A X5 0
1

Yo Y5 As Af Xe

Approach 2 is based on a well-developed, but relatively underutilized, framework for
constructing debiased estimators under missing data (van der Laan and Robins 2003)

e Links (i) the estimator we'd ideally construct under complete data to (ii) the observed
data structure, where Y and A are partially missing
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Approach 2: Complete-data projection

Yy vYy* A A X

i vy A AT X,
Y, Y; Ay A; X
Y Yy Ay AL Xs
Yo Yp A AL Xy
Ys > Asg Ag X5
Yo Y& As A Xe

H O R, O O |9

Idea: If we had complete data, could construct a plug-in estimator /P2 = L S 3, (X)),

where m,(X) =E(Y|A = a, X)
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Approach 2: Complete-data projection

Yy Yy* A A" X

i Yy oA A X
Y, Yy Ay A} X
Y; Y& As A3 Xs
Y, Y AL A X4
Y; Y& As AX X
Yo Y& As AL Xe

Idea: If we had complete data, could construct a plug-in estimator Y52 = L 5™ 4, (X;),
as well as an AIPW estimator

wosz ¢P|2+ Z( I(Az';i)a){y (X)) — wPIZ)

— O R OO rF |

where m,(X) =E(Y|A =a,X) and ¢,(X) =P(4A = a|X)
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Approach 2: Complete-data projection

Yy vYy* A A X

Y, ¢ A A X
Yo Y A A} X»
Y Yy Ay AL Xs
Y, Y AL AL Xa
Ys Y& A5 AL Xs
Yo Y& As A Xe

H O BB O O R |X

Idea: If we had complete data, could construct a plug-in estimator /P2 = L S 7, (X)),
as well as an AIPW estimator

. I(A a) . P,
z/os P|2_|_ Z( W{Y ma(Xi)}—wZ’I2>

Above, m,(X) and §,(X) can be estimated with weighted regressions that add weights
R/P(R = 1|Z) to the underlying loss function
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Approach 2: Complete-data projection

Yy Y+ A A" X
Y, ¥ A A X
Yo Y A A} X»
Y Yy Ay AL Xs
Y. Y AL AL Xa
Ys Y& A5 AL Xs
Yo Y& As A Xe

O 8 20y
@
I(A; = a)

7082 _ opl2 1 S s _ - i AL P2
05 = U0 13 (hal) 4 T i (X)) — 02

H O R, O O |9

Issue: The bias correction terms are only observed when R; =1

e Above estimator is infeasible
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Approach 2: Complete-data projection

Yy Yy* A A" X

Y, Y A A X
Yo Y& Ay A X
Y, Y7 Ay A X
Y, Y7 A AL X
Ys Y2 As AL Xs
Yo Yy As AL Xo

H O R, O O |3

Key idea: Treat the bias correction terms as pseudo-outcomes:
5 5 I~ I(A; =a) 5 PI2
Va2 =95+ = (ma Xi) + —— Y — ma(X5)} — g
2 2 (a0 + (X))}

. 1 & o
=+ o E Xa(Oi; M, Ja)
—_—

=il pseudo outcome
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Approach 2: Complete-data projection

Yy Y+ A A" X
Y, ¥ A A X
Yo Y A A} X»
Y Yy Ay AL Xs
Y. Y AL AL Xa
Ys Y2 As AD X
Yo Y& As A Xe

H O R, O O |9

Key idea: Perform AIPW on the pseudo-outcome:

. A IRS . d
OS2 = P12 4 - > Xa(O4;11a, 4a)
=il
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Approach 2: Complete-data projection

Yy Y+ A A" X
Y, ¥ A A X
Yo Y A A} X»
Y Yy Ay AL Xs
Y. Y AL AL Xa
Ys Y2 As AD X
Yo Y& As A Xe

H O R, O O |9

Key idea: Perform AIPW on the pseudo-outcome:

1[}(95:2 % Z ((pa 3) ﬁ{)ﬁz(ou May Ja) — @a(Zi>}>
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Approach 2: Complete-data projection

Yy Y+ A A" X
Y, ¥ A A X
Yo Y A A} X»
Y Yy Ay AL Xs
Y. Y AL AL Xa
Ys Y2 As AD X
Yo Y& As A Xe

H O R, O O |9

6‘9 =)

Key idea: Perform AIPW on the pseudo-outcome:

8957 004 13 (58 + gy (@i ) (20}

where ¢, (Z) = E[xa(O; q, §0)| Z, R = 1]
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Approach 2: Complete-data projection

Y Y+ A A" X R
i vy A A Xi 1
Yo Yy A A} X2 O
Ys Y7 A; AL X5 0
Yo Y A AL Xy 1
Ys Y& As A Xs 0
Yo Yo As Ar Xe 1

Key idea: Perform AIPW on the pseudo-outcome:
. . 1 n
0s,2 P12
2 _ , - Z;
Po>? = 95t + — ; ( (Z)+ 5

where 0, (Z) = E[xq(O0;; 14, §a)| Z, R = 1]

e Feasible estimator!

e When sampling probabilities are known, 7])

){X@(Oi;maaga) - (Z7)}>

is doubly-robust in the traditional sense
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Approach 2: Complete-data projection

Y Y* A A* X R

Y1 Y A A Xp 1

Yo Yf Ay A} X» 0O

VOYE A A3 X 0 Ox = =050
Yo Y Ay A Xy 1

Y;5 5* Ag Ag X5 0

Yo Yy As AF Xe 1 6

Connections between ¢251 and /952

e Can be shown that asymptotically, Approach 1 and Approach 2 estimators are equivalent

e Approach 2 can be viewed as a re-parameterization of Approach 1

e Both estimators have unique sources of finite sample instability
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Data Application
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The Vanderbilt Comprehensive Care Clinic (VCCC)

EHR database with information on ~ 1900 patients living with HIV between 1998-2011 that
began receiving care at the VCCC

e Numerous variables recorded with error

e Date of antiretroviral therapy (ART) initiation
e Occurrence of AIDS-defining events (ADEs)
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The Vanderbilt Comprehensive Care Clinic (VCCC)

EHR database with information on ~ 1900 patients living with HIV between 1998-2011 that
began receiving care at the VCCC

e Numerous variables recorded with error
e Date of antiretroviral therapy (ART) initiation
e Occurrence of AIDS-defining events (ADEs)

e Reliable measurements on demographic information, risk factors and baseline lab

measurements (baseline covariates, X)

e Team at Vanderbilt University Medical Center manually validated every patient’s
observation in the database
e Effectively yielding a fully validated dataset alongside an error-prone dataset

Causal estimand: Average causal effect of starting ART within 1 month of first visit (A) on
3-year (post initial visit) risk of suffering an ADE (Y)
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VCCC application

“Reveal” increasingly larger shares of the validated data P(R = 1), over-sampling those with
A*=1land Y* =1

e Eg. 5%, 10%, 15%, ...
e Implement proposed estimators at each share

Y Y* A A* X R
i vy A A X 1
Yy A3 X2 0
vy A3 X3 0
Yy A} X4 0
Yy A X5 0
e A5 Xe 0
Y A: X7 0
Yy A; Xz 0
i Ay Xo 0
Yio Alp X 0
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i Yy A AT X 1
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VCCC application

“Reveal” increasingly larger shares of the validated data P(R = 1), over-sampling those with
A*=1land Y* =1

e Eg. 5%, 10%, 15%, ...
e Implement proposed estimators at each share

Y Y* A A* X R
i vy A A X 1
Y» Yy A A X» 1
Y3 Yy A3 A} X3 1
Yo Y Ad Al Xy 1
Y A X5 0
e A5 Xe 0
v A: X7 0
Yy A; Xz 0
i Ay Xo 0
Yio Alp X 0
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Operating characteristics

Operating characteristics: 3—year ADE risk
Treatment: ART initiation within one month of first visit

Average point estimate RMSE
0.03 V v v v v
0.06
0.02
0.04
0.01
0.00 0.02
Otk v - v v v
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Relative size of the validation data, P(R=1)

=7 Approach 1 One-step = Approach 2 One-step (EEM) -~ Naive
Method
=7 Approach 2 One-step -7 Ensemble 7 Oracle
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Discussion
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Discussion

Our work addresses the following high-level question:

How do we estimate causal effects nonparametrically when (1) we have error-prone outcome +

treatment measurements, (2) we have gold-standard treatment 4 outcome measurements for a
subset of our data, where (3) that subset was collected according to a sampling rule that
depends on the initially observed data

We've presented plug-in + debiased one-step estimators that accommodate these sampling
schemes (and general two-phase sampling schemes). Currently working on

e Further studying approaches that improve the finite-sample behavior of the one-step
estimators

e Development of R package implementing Approach 2 for general missing data patterns
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Thank you!

Working paper coming soon!
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Appendix



Identification

First, let W = (Y*, A*). Then, we have
E(Y(a)) = ExE(Y (a)|X)
=Ew (o) x ExE(Y(a)| X, W(a))]
= EW\X,A [ExE(Y|X7 W, A= a, B = 1)]
The problem: the density p(w|z, a) is unidentified

e We only see A in the validation data, which is not independent of W so we can't just
condition on R =1



Identification

Notice

ZZZyp ylw,z,a,r = 1) - p(w|z,a) - p(x)



Identification

Notice

Zzzymmwr—l) p(wlz, a) - p(a)

) e 1), PR
=222 v D o) P

w x




Identification

Notice

=S5y = 1)l ol

= W, T,aq,r = plajz, wip(w|z)p (I) T
ZZZ?J p(y] 1) - el p(z)

w x

)
— p(ylw, z,a,r = plaje, w,r = Uplulz) x
%ZZ‘” Pl e,0m =1) - ek Dpwls) L




Identification

Notice

Zzzymmwr—l) p(wlz, a) - p(a)

= ZZZZ/ p(ylw,z,a,r =1)- pa T’gi;)w)(u’(|f) p(z) p(z)

)
_ . W, T,q,r = (\xwr—l)p(wbﬁ)_ x
—zw:zgc:%:y p(y| y Ly @, 1) Zw/p(a|w,$)p( /|.7J) P( )

Key idea: Use Bayes rule to re-express un-identified density in terms of identifiable ones

e Then, overall expression is identified — just need to define terms and “collapse” the above
expectations



Plug-in implementation

sz Y;* Az A;k Xz Rz )\a ,&a 7ATa Ma
1 0 0 1 32 1 NA NA NA NA
0 1 1 1 2.1 1 NA NA NA NA
1 1 0 0 03 1 NA NA NA NA
1 0 0 1 16 0 NA NA NA NA
0 1 0 1 48 0 NA NA NA NA
1 1 0 0 09 0O NA NA NA NA

Step 1: use validation data to fit /A\a, and fig



Plug-in implementation

Yvi Y;* Az A;k Xz Rz >\a ﬂa 7§‘—a Ta
1 0 0 1 32 1 0.2 072 NA NA
0 1 1 1 21 1 043 018 NA NA
1 1 0 0 03 1 064 077 NA NA
1 0 0 1 16 0 003 055 NA NA
0 1 0 1 48 0 081 011 NA NA
1 1 0 0 09 0 039 083 NA NA

Step 1: use validation data to fit /A\a, and fig



Plug-in implementation

sz Y;* Az A;k Xz Rz >\a ﬂa 7§‘—a ﬁa
1 0 0 1 32 1 0.2 072 NA NA
0 1 1 1 21 1 043 0.18 NA NA
1 1 0 0 03 1 064 077 NA NA
1 0 0 1 16 0 003 055 NA NA
0 1 0 1 48 0 081 0.11 NA NA
1 1 0 0 09 0 039 083 NA NA

Step 2: regress Ao and f1e on X and A* to yield 7, and 7,



Plug-in implementation

Y, Y A A Xy Ri A e Fa Ta
1 0 0 1 32 1 02 072 077 023
0 1 1 1 21 1 043 018 041 0.26
1 1 0 0 03 1 064 077 059 0.80
1 0 0 1 16 0 003 055 008 053

1 0 1 48 0 081 011 072 0.18
1 1 0 0 09 0 039 08 038 079

Step 2: regress Ao and f1e on X and A* to yield 7, and 7,



Plug-in implementation

1/1 le* Av Ar X1 R1 )\(1, ﬂa, 7%(1, ﬁa,

1 0 0 1 32 1 02 072 077 0.23
0 1 1 1 21 1 043 018 041 0.26
1 1 0 0 03 1 064 077 059 0.80
1 0 0 1 16 0 003 055 0.08 0.53
0 1 0 1 48 0 081 011 072 0.18
1 1 0 0 09 0 039 083 038 0.79

. P 15 Aa(Xa,Af
Step 3: construct 1, = > ., ﬁ



Equivalence of Approach 1 and Approach 2 EICs

#2(0) = ez "(0)

- (}P’(RL%HZ) - 1) Pa(Z)



Equivalence of Approach 1 and Approach 2 EICs




Equivalence of Approach 1 and Approach 2 EICs

6%(0) = R ) {I(A: ) (Y_ na(X)> L (X))



Equivalence of Approach 1 and Approach 2 EICs
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