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Motivating Application: Error-Prone EHR data

= The Vanderbilt Comprehensive Care Clinic (VCCC) maintains an EHR database with
~ 1300 people living with HIV receiving care from the VCCC

= Substantial error in key variables, including occurrences of AIDS-defining events
(ADEs) and dates of antiretroviral therapy (ART) initiation

= Causal estimand: Average causal effect of beginning ART within 1 month of first
visit on 3-year ADE risk

= Key problem: Both the outcome and treatment of interest are measured with error

Two-Phase Sampling to Address Measurement Error

Outcomes and treatments stored in EHR data are often measured with substantial error

In many settings, it is possible to validate a random subset of error-prone observations
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In practice, validated subjects are often selected according to a sampling rule which
depends on all initially-observed data: X, Y™* and A*

Goal: Construct semiparametric efficient estimators of counterfactual means E|Y (a)]

Challenge: Validation datasets are typically small in practice - sources of finite-
sample instability can play a prominent role in estimation
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We connect two asymptotically equivalent approaches
for constructing semiparametric efficient one-step esti-
mators, and propose an ensemble estimator that opti-
mizes finite sample efficiency.

Approach 1: Observed Data Distribution

1. Consistency: Y = AY (1) + (1 — A)Y(0)

2. Treatment positivity: P(A =1|X) € (0,1)

3. No unmeasured confounding: (Y (1),Y(0)) 1L A| X

4. A and Y missing-at-random: (A,Y) 1L R|Z, where Z = (X, A", Y™¥)
5. Validation positivity: P(R = 1|Z) € (0,1)

Our Contributions

= We present two asymptotically equivalent, semiparametric efficient one-step
estimators

= We document unigue sources of finite-sample instability faced by each estimator

= We present modifications to improve finite-sample behavior, and construct an
ensemble estimator designed to prioritize finite-sample efficiency

= We developed the R package dremd, which implements the Approach 2 estimator in
general two-phase sampling and missing data settings
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High-level idea: Follow the standard semiparametric statistics pipeline

plug-in estimator
stat. estimand debiased est.

. 1 e . 1
E[f(data)] — W:E; f(data;) — )O°

causal estimand

E[Y (a)] —

Assumptions

tedious) work

We show under Assumptions 1-5,
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where \y(Z) =P(A=a|Z,R=1)and u,(Z) =E(Y|A =a,Z,R = 1) are imputation
models for A and Y. Suggests the one-step estimator
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Approach 2: Complete Data Distribution

High-level idea: [1] With complete data, could construct standard AIPW estimator
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where m,(X) = E(Y|A = a, X) and g,(X) = P(A = a|X) can be fit with weighted
regressions that add weights R/P(R = 1|Z) to the underlying loss functions.
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where ¢, (Z) = E|x.(O;m,, 9.)|Z, R = 1], is an efficient one-step estimator.
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Properties

Under Assumptions 1-5 and standard regularity conditions, we show that )25 and ¢05
are asymptotically equivalent and semiparametric efficient

= Approach 2 can be viewed as a reparametrization of Approach 1
Both approaches have numerous unique sources of finite-sample instability

= Approach 1: debiasing term introduces numerous multiplicative, unstable weighting
terms and requires estimation of 6 nuisance functions

= Approach 2: estimation of ©,(Z) is an inherently difficult task in small samples

We propose estimating (2 ) to minimize the empirical variance of &SS’Q

Ensemble Estimator

High-level idea: )97 and 495 can differ substantially in finite samples

PoR = oy + (1 =) - 45,
where ¥ is chosen in a manner that (i) minimizes finite-sample variance, and (ii) remains
well-defined asymptotically

https./www.github.com/keithbarnatchez/drcmd
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Simulation

Operating characteristics of proposed estimators
Varying (1) overall sample size (2) relative size of validation data
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Relative size of validation data, P(R=1)
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Real Data: Vanderbilt Comprehensive Care Clinic (VCCC)

Team of researchers validated every observation in VCCC database

= Revealed increasingly larger shares of validated data, in manner which depends on
Z

Operating characteristics: 3—year ADE risk
Treatment: ART initiation within one month of first visit

Average point estimate RMSE
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Relative size of the validation data, P(R=1)
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= High rates of measurement error in ADEs (=~ 12.5%) and early ART (4.1%) leads to
arge bias in estimate of ATE

= Ensemble estimator achieves lowest RMSE for all validation proportions
considered
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